

ANGIOPLASY SUMMIT 2010 TCT ASIA PACIFIC

Seoul, Korea: 28-30 April 2010

Session: Left Main & Bifurcation Summit I

Standardized treatment strategies for LM Bifurcation PCI

Speaker – 12'

Antonio Colombo

Centro Cuore Columbus Milan, Italy S. Raffaele Hospital Milan, Italy

Conflicts

Minor share holder in Cappella Inc. producing a dedicate ostial stent

Randomized Study of the Crush Technique Versus Provisional Side-Branch Stenting in True Coronary Bifurcations

The CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study

Antonio Colombo, MD; Ezio Bramucci, MD; Salvatore Saccà, MD; Roberto Violini, MD; Corrado Lettieri, MD; Roberto Zanini, MD; Imad Sheiban, MD; Leonardo Paloscia, MD; Eberhard Grube, MD; Joachim Schofer, MD; Leonardo Bolognese, MD; Mario Orlandi, MD; Giampaolo Niccoli, MD; Azeem Latib, MD; Flavio Airoldi, MD

Colombo A. et al Circulation 2009;119:71-78.

<u>CACTUS trial</u> <u>Coronary Bifurcation Application of the Crush Technique Using Sirolimus-Eluting stents</u>

*= non cardiac death (ischaemic stroke contirmed by autopsy)

Interventional Cardiology

Randomized Trial of Simple Versus Complex Drug-Eluting Stenting for Bifurcation Lesions The British Bifurcation Coronary Study: Old, New, and Evolving Strategies

David Hildick-Smith, MD, FRCP; Adam J. de Belder, MD, FRCP; Nina Cooter, MSc;
Nicholas P. Curzen, PhD, FRCP; Tim C. Clayton, MSc; Keith G. Oldroyd, MD, FRCP;
Lorraine Bennett, MSc; Steve Holmberg, MD, FRCP; James M. Cotton, MD, FRCP;
Peter E. Glennon, PhD, FRCP; Martyn R. Thomas, MD, FRCP; Philip A. MacCarthy, PhD, FRCP;
Andreas Baumbach, MD, FRCP; Niall T. Mulvihill, MD; Robert A. Henderson, DM, FRCP;
Simon R. Redwood, MD; Ian R. Starkey, BSc, FRCP; Rodney H. Stables, DM, FRCP

EMO GVM CENTRO CUORE COLUMBUS S.F.I. Procedure Characteristics				
	Simple (n=249)	Complex (n=248)	P	
Final kissing balloons				
Attempted, n (%)	76 (31)	223 (90)	ns	
Successful, n (%))	72 (29	189 (76)	ns	
Success as % of attempted	95	85	0.01	

	Simple (n=250)	Complex (n=250)	P
In-Hospital MACE (%)	5 (2.0)	20 (8.0)	0.002
Death (n)	o o nficti vezničn	∣ Danali mace	silin (d)
MI (n)	5	18	
CABG (n)	0	3	

Conclusions

For treatment of coronary bifurcation lesions, a systematic 2-stent technique results in longer procedures, higher x-ray doses, more procedural complications, and a higher rate of in-hospital and 9-month MACE. The provisional T-stent strategy should be the default treatment for most bifurcation lesions; however, there may be subtypes of coronary bifurcation that nonetheless merit a systematic 2-stent strategy.

The provisional T-stent strategy should be the default treatment for most bifurcation lesions; however, there may be subtypes of coronary bifurcation that nonetheless merit a systematic 2-stent strategy.

Two-stent approach

Provisional: Not always the best option !

Unfavourable angle

Unfavourable angle: mini crush

F i n a I

Techniques for 2 stents

Culotte: more complex

Crush: immediate patency

T stenting: no overlap

V stenting: immediate patency, specific antomy

If crush 2 steps kiss

Influence of Final Kissing in the CACTUS trial

	YES Final Kissing 163 pts.	NO Final Kissing 14 pts.	Р
Myocardial infarction	7.5%	29%	0.001
TLR	6.3%	12.9%	0.25
MB restenosis	4.7%	16%	0.03
SB restenosis	11.9%	36%	0.001
Stent thrombosis	0.9%	6.5%	0.06

IVUS evaluation mandatory every time 2 stents are implanted:

If IVUS cath does not cross the stent perform a better postdilatation

Final

The AVIO (<u>Angiography Vs.</u> <u>IVUS Optimization</u>) definition of optimal stent result is based on the achievement of % of CSA inside the stent corresponding to 70% of the balloon CSA.

The balloon is selected according to the media to media diameters in the stented segment.

At the stent edges the 70% criterion can be reduced to 60%, to lower the risk of peri-stent dissection

Balloon size (mm)	60%	70%
3	4.24	4.95
3.5	5.77	6.73
3.75	6.62	7.73
4	7.54	8.79
4.25	8.51	9.93
4.5	9.54	11.13

2. Lesion preparation

IVUS Images Post Rotablator

LAD Os

• Crush technique: 3.0x33 Cypher in Cx and 3.5x18 Cypher in LAD.

CCC

Modified T-Stenting With Intentional Protrusion of the Side-Branch Stent Within the Main Vessel Stent to Ensure Ostial Coverage and Facilitate Final Kissing Balloon: The T-Stenting and Small Protrusion Technique (TAP-Stenting). Report of Bench Testing and First Clinical Italian-Korean Two-Centre Experience

Francesco Burzotta,^{1*} мд, PhD, Hyeon-Cheol Gwon,^{2*} мд, Joo-Yong Hahn,² мд, Enrico Romagnoli,¹ мд, PhD, Jin-Ho Choi,² мд, Carlo Trani,¹ мд, and Antonio Colombo,³ мд

